
 

Pure aluminum and its alloys, such as weight-saving 
materials, play an increasingly important role of technical, 
technological and economic terms [1] in the aerospace and 
automotive industries [2], where lightweight and rigid structure 
are preferred [3].The usage of these materials for moving parts 
is limited due to their low abrasion and wear resistance. To 
improve tribological properties of such materials, the surface of 
these components is treated by anodic oxidation process, which 
also improves the corrosion resistance [1], [2]. The thickness of 
the AAO film formed on the aluminum substrates is one of the 
main indicators of corrosion protection and overall durability 
of so prefinished profiles. For these reasons the anodic 
oxidation of aluminum has received great attention of 
considerable amount of researchers. For example, the 
formation of AAO layers was studied in [4], growth rate of the 
oxide was studied in [5] and structure of the formed AAO layer 
was investigated in [6]. The basic tool that allows us to observe 
the effect of input variables (factors) on output variable 
(response) is Design of Experiments [7, 8, 9, 10]. The optimum 
selection of process conditions is an extremely important issue 
as the sedetermine surface quality of the manufactured parts 
[11, 12, 13, 14]. The mathematical modeling of the process 
involves several parameters that may lead to difficult analytical 
solution [15, 16, 17, 18, 19]. On the other hand, the use of 
artificial intelligence (neural networks theory) for evaluating 
the experiment results is justified mainly due to higher speed 
and accuracy of behavior prediction of  observed process 
compared to conventional statistical evaluation methods [20, 
21, 22, 23, 24]. 

Alloy EN AW 1050 - H24 with dimensions 101x70x1 mm 
was used for the specimens. Each applied specimen was 
degreased in a 38.00% solution of NaOH at 55.00 to 60.00 ° C 
for 2 minutes and stained in a 40.00% solution of NaOH at the 
temperature 45.00 ° -50.00 ° C for 0.50 min. Consequently, the 
specimen was immersed in a nitric acid bath (4.00% HNO3) at 
the temperature 18.00 to 24.00 ° C for 1.00 minute. Between 
each operation, the sample was rinsed with distilled water. 

The electrolyte solution containing sulphuric acid p.a., 
oxalic acid p.a. and alumina oxide p.a. was used for anodic 
oxide process. Individual concentrations were based on the 
Design of Experiments (DoE) methodology corresponding to 
the central composite design for six factors, which determined 
operating conditions of anodizing process (the electrolyte 
temperature, the size of an applied voltage and duration of 
oxidation). Tab. 1 presents the conversion of factor levels 
between coded scale and natural one. Such areas of the sample 
surface where the current density was 4 A·dm-2, 5 A·dm-2 
or 6 A·dm-2 were indicated after the anodizing process was 
finished. Furthermore, 9 points were indicated at a distance of 
5mm, 10mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm and 
45 mm from the bottom edge of each sample. The thickness of 
the formed anodic oxide films was measured in these points.
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TABLE I.  CONVERSION OF FACTORS LEVELS BETWEEN CODED SCALE AND NATURAL ONE 

Factors denotation Factor level 

Coded Scale Natural Scale -2.37 -1 0 +1 +2.37 

x1 H2SO4[mol·l-1] 0.34 1.33 2.04 2.75 3.74 

x2 C2H2O4[mol·l-1] 1.65·10-2 7.77·10-2 1.22·10-1 1.66·10-1 2.28·10-1 

x3 Al3+[mol·l-1] 6.67·10-3 1.85·10-1 3.15·10-1 4.45·10-1 6.23·10-1 

x4 T[°C] -1.78 12.00 22.00 32.00 45,78 

x5  t [s] 373.00 1200.00 1800.00 2400.00 3226.00 

x6 U[V] 5.24 8.00 10.00 12.00 14.76 

A higher-order neural unit (HONU), especially the 3rd 
order HONU [26] based on the iterative Levenberg-Marquardt 
(LM) algorithm [27] was used to determine the influence of 
input factors on the thickness of the final AAO layer. This 
algorithm is often used for training technique of the neural 
unit. It is a process of updating individual weights w in a 
predetermined number of steps to achieve a minimum 
difference between the actual and calculated values of 
observed variable [28]. This process is described by (1) – (8). 
The vector u of neural inputs is created by taking the partial 
derivatives of each output in respect to each weight (1) – (3). 
The equation describing the investigated model is the 
characteristic equation of given type of neural unit (1storder 
HONU, 2ndorder HONU a 3rdorder HONU) for observed 
factors x1, x2, x3, x4, x5, x6 . The Levenberg-Marquardt algorithm 
consists in solving (4), where the Jacobian J is the matrix of 
dimension n×m (5), where n is the length of the input vector u 
of the neural unit (n is the number of neural inputs) and m is 
the total number of parameters intended for the learning 
procedure. The vector of neural inputs as well as the Jacobian 
is defined in the first step of the learning procedure and they 
remain constant in all subsequent steps of learning. In (4) there 
is the weight update vector ∆w that we want to find, e is the 
error vector containing the output errors for each input vector 
used on training the network, 1/ µ is the Leveberg’s damping 
factor which tell us by how much we should change our 
network weights to achieve a (possibly) better solution. The 

JJ ⋅
T

 matrix can also be known as the approximated 
Hessian, the I is an identity matrix of diagonal length equal to 
the number of neural weights (matrix of dimension n× n), µ is 
the learning rate. 

The vector y' of neural outputs is defined as the dot product 
of vectors w and u (6), the size of the individual weight is set in 
the first step randomly. After calculating the output vector is 
calculated error vector e as the difference between the actual 
value of the observed variable and the calculated one by the 
neural units (6).  Then the weight update vector ∆w is 
determined by (4). The size of the learning rate µ depends on 
how quickly and how accurately the neural unit is able to learn. 
At higher values of learning rate the neural unit will learn faster 
but there is a risk of instability respectively a risk of model 

oscillation. At lower values of learning rate the calculation is 
more accurate but the learning process requires a larger number 
of iterations [16]. After calculating the weight- updates, the 
adaptation of the weights of input factors occurs. This is the 
end of first step (respectively the first iteration) of the learning 
process of neural unit using iterative Levenberg-Marquardt 
(LM) algorithm optimization. The learning process of neural 
units continues by calculating the vector of neural outputs y 
using the new (adapted) weights. 
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3. The Application of Neural Networks  
    in the Evaluation of Anodizing Process 
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Setting of simulation was used as follows. Letter y means a 
mean value of the layer thickness measured in points at a 
distance of 10.00 mm, 20.00 mm, 30.00 mm and 40.00 mm 
from bottom margin of each testing sample. Current density 
was set at 4.00, 5.00 and 6.00 A·dm-2. For learning process 
were used 36 values of randomly measured thickness for one 
setting of the current density. Ten remaining values of the 
thickness were used during model validation process. That 
value ratio was chosen experimentally, according to goal to 
find the lowest possible number of training values sufficient 
enough to provide the prediction model with adequate 
precision. With the greater amount of training data we were not 
able to clearly validate the model. During evaluation of the 
experiment results, it was possible to mathematically describe 
an influence of the input factors on the resulted thickness of the 
AAO layer via neural unit. The unit used cubic model with 
small number of data. According to the theory of the neural 
networks the third order HONU is able to surely describe 
highly nonlinear model only via large amount of training data. 
Respectively, with smaller amount of training data is necessary 
to choose a neural unit with lower order. When we tried to use 
lower order neural unit (linear model, quadratic model) a big 
error of prediction model occurred. The error occurred during 
the training process and became even greater during validation 
process. In Tab. 2 it is possible to see how much is the model 
unable to describe the influence of state values, which were not 
in training data. In the table are statistical stats of correctness of 
cubic, quadratic and linear model. The table also contains 
suitability (or correctness) of usage the particular evaluation 
models for estimating of the AAO layer thickness. The sum of 
square errors of 3rd Order HONU was 7.50 times lower than the 

sum of square errors of 2nd Order HONU at the current density 
of 4.00 A·dm-2. At the current density of 5.00 A·dm-2 the sum 
of square errors was even 8.33 times lower, and 7.40 times 
lower at the current density of 6.00 A·dm-2. Usage of 3rd Order 
HONU is 5.93 times more accurate than 1st Order HONU at the 
current density of 4.00 A·dm-2, 10.41 times more accurate if the 
current density was 5.00 A·dm-2 and 10.67 times more accurate 
at the current density of 6.00 A·dm-2. While 3rd Order HONU 
neural unit was used, correlation index of the input factors and 
the AAO result thickness reached levels 96.67 %, 97.56 % 
and 98.33 % at the current densities of 4.00 A·dm-2, 5.00 A·dm-

2 and 6.00 A·dm-2. In comparison with 2rd Order HONU the 
correlation index is approximately 7.14% higher and about 
12.64% in comparison with results of 1rd Order HONU. Fig.1 
shows the simulation error (a difference between measured and 
calculate value of the AAO layer thickness) of individual 
mathematical model (1st, 2nd a 3rdorder HONU neural units) 
developed for the current density of 4.00 A·dm-2. 

TABLE II.  SELECTED INICATORS OF THE ACCURACY OF DEVELOPED 
MODELS 

Model 
Current  
density  
[A·dm-2] 

SSE 
[-] 

MSE 
[-] 

R2 

[%] 
R 

[%] 

Cubic 
3rd Order  
HONU 

4.00 87.51 1.90 93.45 96.67 

5.00 62.42 1.36 95.17 97.56 

6.00 45.31 0.98 96.69 98.33 

Quadratic 
2nd Order 
 HONU 

4.00 656.75 14.28 78.79 88.76 

5.00 519.70 11.30 81.03 90.02 

6.00 335.50 7.29 85.30 92.36 

Linear 
1st Order  
HONU 

4.00 518.69 11.28 68.31 82.65 

5.00 649.87 14.13 78.91 88.83 

6.00 496.92 10.80 69.16 83.16 

  

 

 

Fig. 1.  Simulation error of 1st, 2nd a 3rd order HONU neural units at observed current density of 4.00 A·dm-2 

4. Results and Discussion 
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As we can see in the figure, the biggest errors appear in the 
estimation of AAO layer thickness via 1rd Order HONU, which 
describes the influence of input parameters using only linear 
function. The 2rd Order HONU shows lower error of estimation 
the AAO layer thickness. This neural unit describes the impact 
on the response by using quadratic function. Usage of that kind 
of neural unit could be useful in industry to obtain approximate 
information about input factors influence on the result of 
technological process. Unfortunately, that neural unit shows 
the highest absolute calculation error in comparison with other 
tested neural units. Particularly in estimation of the AAO layer 
thickness of sample no. 20 the evaluated value is about 
18.67 mm·10-3 greater than the actual value of measured 
thickness of the AAO layer. That means a big chance for 
similarly high error during calculation with the input factors 
which were not included in the experiment. For that reason, 
the 2ndOrder HONU neural unit is insufficient for real industry 
control. The best results are shown by using the 3rdorder 
HONU neural unit, which describes the influence of input 
factors on the AAO layer thickness by using quadratic 
function. In other words, that neural unit is the most nonlinear 

from tested units and that cause its ability to estimated so 
complicated model with high precision. 

 Fig. 2, Fig. 3 and Fig. 4 describe the training process of 
neural units of 3rdorder HONU and the verification process of 
the obtained prediction model at current density 4.00 A·dm-2 
(Chyba! Nenašiel sa žiaden zdroj odkazov.), 5.00 A·dm-2 

(Chyba! Nenašiel sa žiaden zdroj odkazov.) and 6.00 A·dm-

2(Chyba! Nenašiel sa žiaden zdroj odkazov.). From these 
figures it is clearly seen how all points (values of the AAO 
layer thickness) used for training are laying on ideally straight 
line. That means, that the neural unit was able to learn how the 
input factors influence the resulting AOO layer thickness with 
almost absolute precision. The sum of square errors reached 
the value of 1.20·10-11 mm2·10-6 during training process at the 
current density of 4.00 A·dm-2, the value of 1.60·10-

10 mm2·10-6 at current density of 5.00 A·dm-2 and value of 
8.38·10-9 mm2·10-6 at current density of 6.00 A·dm-2. During 
the validation process, it results in a difference between the 
measured value of AAO layer thickness and predicted value of 
AAO layer thickness, because the neural unit was not trained 
for that sort of combinations of the input factors. 

 

Fig. 2.Training and testing process of 3rd order HONU at current density of 4.00 A·dm-2   
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Fig.3.Training and testing process of 3rd order HONU at current density of 5.00 A·dm-2 

 

Fig. 4. Training and testing process of 3rd order HONU at current density of 6.00 A·dm-2  

 Tab. 3 shows the chosen statistical stats of correctness of 
used models through the validation process for the current 
densities of 4.00, 5.00 and 6.00 A·dm-2. As is shown, the sum 
of square errors within model validation process reaches the 
values of 87.51 mm2·10-6, 62.42 mm2·10-6 and 45.31 mm2·10-6 
according to the individual current densities. Mean absolute 
error of estimations are 3.12 mm·10-3, 2.63 mm·10-3 and 
2.24 mm·10-3 for individual current densities 4.00, 5.00 and 
6.00 A·dm-2. The confidence interval is 70.23 %, 72.57 % 
and 82.05 % according to the individual current densities 4.00, 
5.00 and 6.00 A·dm-2. These values also mean the accuracy of 
estimation of formed AAO layer thickness based on various 
combinations of the input factors. 

Using the developed computational models it is also 
possible to monitor the influence of individual input factors on 
the final thickness of AAO layer. To illustrate it, the graphical 
interpretation of dependencies, describing the effect of 
individual factors on the final thickness of AAO layer at 
current densities of 4:00, 5:00 and 6:00 A·dm-2, was created. 
The level of only one factor was varied; the level of the 
remaining five factors was set at level 0. Fig. 5 – Fig. 10 
display the effect of these factors.  

The effect of factor x1 is displayed in Fig. 5, the effect of 
factor x2 in Fig. 6, the effect of factor x3 in Fig. 7, the effect of 
factor x4 in Fig. 8, the effect of factor x5 in Fig. 9 and the effect 
of factor x6 in Fig. 10. As seen in Fig. 5 – Fig. 10, the size of 
the current density has no noticeable effect on the thickness of 
the AAO layer in those areas where formation of the layer 
occurs. 

TABLE III.  SELECTED INDICATORS OF THE ACCURACY OF MODELS IN 
VALIDATION PROCESS 

Model 
Current 
density 

[A·dm-2] 

SSE 
[-] 

MSE 
[-] 

MAE 
[-] 

R2 

[%] 
R 

[%] 

Cubic 
3rd Order 
HONU 

4.00 87.51 9.72 3.12 70.23 83.81 

5.00 62.42 6.94 2.63 72.57 85.19 

6.00 45.31 5.03 2.24 82.05 90.58 

 

Respectively, the effect of current density is minimal (for 
boundary conditions, the difference in thickness of the AAO 
layer is less than 2mm·10-3). When increasing level of factor x1 
(Fig. 5), the electrical conductivity of the electrolyte increases 
too. On the other hand, when the level of factor x1 is raised the 
speed of re-dissolution of alumina formed on the surface of 
oxidized profile is increased. 

Fig. 6 shows that with increasing level of factor x2, the 
electrical conductivity of the electrolyte increases (similar to 
factor x1). However, the energy required for dissociation of 
molecules C2H2O4 is diminished when factor x2 is set to its 
higher level.  

From Fig. 7 it can be deduced that low levels of factor x3 
lead to the dissolution of the oxide layer and to the saturation 
of the electrolyte of aluminum cations Al3+. If the 
concentration of the aluminum cations in the electrolyte is 
higher than at the steady state, it results in their migration to 
the cathode where they are reduced to atomic aluminium and 
the system energy is decreased. 
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Fig. 5 Effect of factor x1 on the thickness of AAO layer at given conditions 
x2=0 (1.22·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x4=0 (22.00 °C), x5=0 
(1800.00 s), x6=0 (10.00 V) 

 

Fig. 6 Effect of factor x2 on the thickness of AAO layer at given conditions 
x1=0 (2.04·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x4=0 (22.00 °C), x5=0 
(1800.00 s), x6=0 (10.00 V) 

 

Fig. 7 Effect of factor x3 on the thickness of AAO layer at given conditions 
x1=0 (2.04·10-1 mol·l-1), x2=0 (1.22·10-1 mol·l-1), x4=0 (22.00 °C), x5=0 
(1800.00 s), x6=0 (10.00 V) 

 

Fig. 8 Effect of factor x4 on the thickness of AAO layer at given conditions 
x1=0 (2.04·10-1 mol·l-1), x2=0 (1.22·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x5=0 
(1800.00 s), x6=0 (10.00 V) 

 

Fig. 9  Effect of factor x5 on the thickness of AAO layer at given conditions 
x1=0 (2.04·10-1 mol·l-1), x2=0 (1.22·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x4=0 
(22.00 °C), x6=0 (10.00 V) 

 

Fig. 10 Effect of factor x6 on the thickness of AAO layer at given conditions 
x1=0 (2.04·10 – 1 mol·l 1), x2=0 (1.22·10-1 mol·l-1), x3=0 (3.15·10-1 mol·l-1), x4=0 
(22.00 °C), x5=0 (1800.00 s) 

The electrolyte conductivity strongly improves with 
increasing level of factor x4 (Fig. 8). This is inferred from the 
fact that the system energy is higher at higher temperatures and 
therefore chemical reactions proceed more rapidly. On the 
other hand, the increasing level of factor x4 enhances the 
aggressive effects of the electrolyte on the formed AAO layer. 
Similarly, the layer thickness is increased by increasing level of 
factor x5 (Fig. 9) because the layer is formed a longer time. 
Since factor x6 determines the strength of such oxygen anions 
that are attracted to the anode, the thickness of the formed 
AAO layer also increases with increasing level of factor x6. 

As shown by the evaluation of experimental results 
presented above, the use of neural networks based on the 
iterative Levenberg-Marquardt (LM) optimization algorithm 

5. Conclusion 
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provides a wide range of options to control the anodizing 
process.  There are several reasons for this. First and foremost, 
there is a pressing need to produce the right product at the right 
time, and here the use of neural networks comes in very handy. 
We can quickly and simply describe the behavior of the 
monitored system. By using the neural unit of 3rd order HONU 
it was possible to describe the influence of input factors on the 
thickness of final AAO layer at defined current densities 4.00 
A·dm-2, 5.00 A·dm-2 and 6.00 A·dm-2 with confidence interval 
of 93.45%, 95.17% and 96.69%. This neural unit allowed us to 
monitor the impact of input factors on the final thickness of the 
AAO layer. It also provide us another way of understanding 
and expressing the process behavior by graphical 
representation of how a response (the thickness of AAO layer) 
may change due to changing values of factors x1 – x5 and their 
interactions. 
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